Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus.

نویسندگان

  • Guitele Dalia Goldhaber-Pasillas
  • Natali Rianika Mustafa
  • Robert Verpoorte
چکیده

The stress response after jasmonic acid (JA) treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA) and terpenoid indole alkaloids (TIA). According to multivariate data analyses (MVDA), three major time events were observed and characterized according to the variations of specific FA and TIA: after 0-30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90-360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transient effect of jasmonic acid feeding along with ORCA3 overexpression in Catharanthus roseus hairy roots

Jasmonic acid is an important signaling molecule in plants that regulates a wide variety of cellular responses including the responses to abiotic and biotic stresses. The external application of jasmonic acid has been shown to increase the accumulation of the monomeric terpenoid indole alkaloids, TIAs, in Catharanthus roseus seedlings and hairy root cultures (1-3). Jasmonic acid regulates the e...

متن کامل

Medium-Induced Formation of Indole Alkaloids and Concomitant Changes of Interrelated Enzyme Activities in Cell Suspension Cultures of Catharanthus roseus

Recently medium conditions have been developed which stimulate the formation of the indole alkaloid ajmalicine in cell suspension cultures of Catharanthus roseus [6]. When cells were subjected to these conditions the alkaloid accumulation was preceded by a 12-fold increase of the specific activity of tryptophan decarboxylase. The enzyme activity showed a maximum two days after the cell transfer...

متن کامل

Purification, molecular cloning, and cell-specific gene expression of the alkaloid-accumulation associated protein CrPS in Catharanthus roseus.

Identification of molecular markers of monoterpenoid indole alkaloid (MIA) accumulation in cell-suspension cultures of Madagascar periwinkle (Catharanthus roseus (L.) G. Don) was performed by two-dimensional polyacrylamide gel electrophoresis. Comparison of the protein patterns from alkaloid-producing and non-producing cells showed the specific occurrence of a 28 kDa polypeptide restricted to c...

متن کامل

The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and func...

متن کامل

The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis

MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2014